Bp Neural Network-Based Effective Fault Localization

نویسندگان

  • W. Eric Wong
  • Yu Qi
چکیده

In program debugging, fault localization identifies the exact locations of program faults. Finding these faults using an ad-hoc approach or based only on programmers’ intuitive guesswork can be very time consuming. A better way is to use a well-justified method, supported by case studies for its effectiveness, to automatically identify and prioritize suspicious code for an examination of possible fault locations. To do so, we propose the use of a back-propagation (BP) neural network, a machine learning model which has been successfully applied to software risk analysis, cost prediction, and reliability estimation, to help programmers effectively locate program faults. A BP neural network is suitable for learning the input-output relationship from a set of data, such as the inputs and the corresponding outputs of a program. We first train a BP neural network with the coverage data (statement coverage in our case) and the execution result (success or failure) collected from executing a program, and then we use the trained network to compute the suspiciousness of each executable statement,a in terms of its likelihood of containing faults. Suspicious code is ranked in descending order based on its suspiciousness. Programmers will examine such code from the top of the rank to identify faults. Four case studies on different programs (the Siemens suite, the Unix suite, grep and gzip) are conducted. Our results suggest that a BP neural network-based fault localization method is effective in locating program faults.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalized ABFT technique using a fault tolerant neural network

In this paper we first show that standard BP algorithm cannot yeild to a uniform information distribution over the neural network architecture. A measure of sensitivity is defined to evaluate fault tolerance of neural network and then we show that the sensitivity of a link is closely related to the amount of information passes through it. Based on this assumption, we prove that the distribu...

متن کامل

Fault Localization Method Based on Enhanced GA- BP Neural Network

In the process of software development and maintenance, software debugging is the most complicated and expensive part. In recent years, automated software fault localization technology has attracted many scholars’ attention, various approaches have been proposed. In this paper, a technique named EGA-BPN is proposed which can provide suspicious locations for fault localization automatically with...

متن کامل

Stator Turn-to-Turn Fault Detection of Induction Motor by Non-Invasive Method Using Generalized Regression Neural Network

Condition monitoring and protection methods based on the analysis of the machine's current are widely used according to non-invasive characteristics of current transformers. It should be noted that, these sensors are installed by default in the machine control center. On the other hand, condition monitoring based on mathematical methods has been proposed in literature. However, they are model b...

متن کامل

Fuzzy Bp Network for Fault Self-diagnosis System of Automatic Transmission

According to the design procedure of fault self-diagnosis system and features of automatic transmission system, the list of relation and mapping between fault symptoms and fault causes are made in this paper. Applying the approach of fault self-diagnosis based on fuzzy neural network, fault diagnosis of the automatic transmission electronic control system is realized. The structure of fuzzy neu...

متن کامل

Optimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network

This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International Journal of Software Engineering and Knowledge Engineering

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2009